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ABSTRACT

A method to obtain high precision solutions of the temperature integral is presented. Most
of the approximation functions are rational. The approximations are competitive with others
given in the literature.

INTRODUCTION

In order to describe kinetically reactions which occur in non-isothermal
conditions, the classical equation is used [1,2]

dea A4 _

d*Tzﬁf(“)e E/RT (1)
with

fl@)=(1~a)a"[~In(1 -a)]” (2)
and the “classical” conditions

A = constant (3)
E = constant (4)
n = constant, m = constant, p = constant (5)

In eqn. (1) and relationships (2)—(5) the parameters have their usual mean-
ing,

The classical case can be generalized for a pre-exponential factor which
depends on temperature, i.e.

A=AT" (A, = constant, r = constant) (6)

0040-6031,/90,/803.50 © 1990 - Elsevier Science Publishers B.V.



72

Equation (1) with the pre-exponential factor given by eqn. (6) becomes

A
0 = T () e )
(The use of a temperature-dependent pre-exponential factor does not violate
the classical conditions. As shown in our previous paper [1] non-classical
conditions indicate dependence of the kinetic parameters on conversion.)
Equations of the form (1) and (7) can be obtained from the isothermal
differential kinetic equation
da
dr
(considered as the postulated primary isothermal differential kinetic equa-
tion (P-PIDKE) [3-5]) by applying the classical non-isothermal change
[3-5], the temperature being given by

T=T,+ Bt (B = constant) 9)
The following considerations are valid for a constant heating rate.

Equation (7) through variable separations and subsequent integration
leads successively to

=ATf(a) e 5/FT (T = constant) (8)

da A4
—— =7 T e ¥Rdr 10
7w~ BTE (10
@ da A T, g,
— = 7 ’ *d 11
W F) TR e ()
The integral from the right-hand side of eqn. (11) can be written as
T T T, _
yr e—E/Rydy - f ) e~ E/Ry dy _f yr e~ E/R) dy (12)
T, 0 0

Thus to solve the integral from the right-hand side of eqn. (11) we must
solve the integrals of the form fy” e /%Y dy, which are frequently met in
non-isothermal kinetics [6] and are called temperature integrals.

THEORETICAL ASPECTS CONCERNING THE APPROXIMATE SOLUTION OF THE
TEMPERATURE INTEGRAL

In the literature, two techniques have been employed to solve the temper-
ature integral approximately: (a) the use of series for approximation [6-14]
and (b) the use of approximate formulae for the temperature integral. Case
(b) is discussed here. It should be emphasized that the temperature integral
cannot be solved exactly.

To obtain an approximate solution of the temperature integral, let us
suppose that

T v —E/Ry q.,_ Roria —EsRT, (i
et ay=F T e MY, | gy (13)
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Taking the derivative of eqn. (13) with respect to T we obtain

E r .—E/RT, E
ﬁ)” e Qr(i‘r‘)

T e—E/RT= (r + 2)%T’+l e—E/RTQr(
roa— ’ E
_ 7 e~ E/RT, (ﬁ) (14)

where Q/( E/RT) is the derivative with respect to the variable E/RT. From
eqn. (14), after performing the calculations, we obtain

 E r+2 E
o zr)~ 1+ £/zr )0 7] +1=0 (15)
Equation (15) with the notation

E
X=ﬁ>0 (16)
becomes

+

0/ - (142 )e ) +1=0  (r20) (17

The differential equation (17) does not have an exact solution and from the
information standpoint is equivalent to approximation (13). Thus to solve
the temperature integral approximately we must find an approximate solu-
tion for differential equation (17) where

0<Q,(x)<1 (18)
We propose a solution of the form

Q(x, p(x), ¢) (19)
with

i=1,2,...,N (20)
where p(x) is a parameter which depends on x and changes smoothly with
it and ¢, ¢;,..., cy are constants.

To approximate p(x) we must introduce eqn. (19) into eqn. (17). We
obtain

90,(x, p(x). )  30.(x, p(x). c) dp(x)
0x op(x) dx
“22)0,(x, p(x), ¢) +1=0 (21)

A first approximation for p(x), po(x, c,), corresponds to the case for which
the term

aQr(x7 pO(x’ Cl)cl) de(x7 Cl)
dpo(x, ¢,) dx

-1+

(22)
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can be neglected in eqgn. (21). In such conditions

a P b4 i 1
Olo ol 6)6) (1 73200 (v, pylxe)e) +1=0 (@23)

Taking into account this result, p,(x, ¢,) is obtained as the solution of an
algebraic equation. Introducing py(x, c,) into eqn. (19), the approximation

0.(x, pol(x, ¢,), ¢,) (24)

is obtained.
The procedures to determine the constants ¢, c,,..., ¢y are given below.
In some simple cases, function (19) should not contain the constants c,.

APPLICATIONS

In this section, some applications of eqn. (23) and the corresponding
particular forms of function (24) for five values of r (0, 3, 1, 3 and 2) are
presented. The approximations are checked by calculating the value of
Q,(x) for values of x of 5, 10, 20, 30, 40, 50, 75 and 100 and determining
relative percentage error with respect to numerically evaluated Q,(x) values.
The Q,(x) values obtained via numeric procedures using relationship (13)
are given in Table 1.

As the Q,(x) values in Table 1 are given with a precision of +2 x 107’
and the Q,(x) values calculated for various approximations are compared
with those in Table 1, a relative error lower than (2 X 1077 /Q,(x)) X 100 is
not significant. Values of the relative percentage error ¢, which do not fulfil
the condition

(25)

are given by =10 %or = —107>,

TABLE 1

Values of the function Q,(x) for various values of x and r *

Number X Q(x) 01 ,2(x) 0:(x) 03,5(x) 0,(x)

1 5 0.7394456 0.6928382 0.6513860 0.6143237 0.5810234
2 10 0.8436667 0.8115484 0.7816671 0.7538065 0.7277768
3 20 0.9125819 0.8929838 0.8741822 0.8561305 0.8387868
4 30 0.9392349 0.9251512 0.9114731 0.8981838 0.8852674
5 40 0.9534159 0.9424266 0.9316828 0.9211763 0.9108997
6 50 0.9622251 0.9532157 0.9443707 0.9356855 0.9271562
7 75 0.9743459 0.9681345 0.9620008 0.9559435 0.9499611
8 100 0.9805772 0.9758379 0.9711437 0.9664938 0.9618880

* Values are given with a precision of +2x107".
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TABLE 2
Coefficients a, in relationship (26) {15]

r a, a, a, a,

0 —-20 4.0 -10.0 30.0

1 —-25 6.25 —18.125 61.563
1 =30 9.0 —30.0 1140

1 -35 12.25 —~46.375 190.985
2 -4.0 16.0 —68.0 314.0

Table 2 contains the coefficients a for the following form of Q,(x) [15]

Q,(x)=1+x+11 + (x+1)(2x+2) * (x+1)(x+32)(x+3)

a4

+ (x+1)(x+2)(x+3)(x+4)

which is used for comparison. In Table 3 some functions Q(x) (r = 0) taken
from the literature are also given for comparison. Table 4 contains our
approximations Q(x) (r=0) and Tables 5-8 contain our approximations
Q,.(x) (r=13,1, 3, 2) in comparison with Q,(x) given by eqn. (26).

* In the following we describe the new approximations proposed in this
work.

(26)

Case 1
Qr(x’ p(X), Cl) = 1 + a(xx)

p(x)=a(x) (27a)
The particular form of eqn. (23) is

(27)

—30—(2’2—(1+i-2—)(1+a—°(2)+1=0 (28)
x x x
From eqn. (28) we obtain

r+2)x
ap(x) = - ZED% (29)
Thus

x+1
Q,(x)= 5753 (30)
or
r+2

0 (x)=1- 773 (31)
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TABLE 3

Q(x) (r =0) approximations taken from the literature

Approxi- Q(x)(r=0) Deg- Reference x
mation ree * ]0
1 1 0 [16-19.25] 35.23 18.53
2 x=2 1 (8.11,16-
X
21.25] ~1886  —5.18
P
3 — 1 (8.11,18,19,
21.22,25] -340 -1.22
x+1
4 =73 1 [23]. this
work
(eqgn. (32)) 143 0.295
1
5 —— - [11,19,25] 0799  0.176
(1+4/x) "~
o? -2
6 - 2 [18,24.25] 6.77 0.877
x-—6
x1=2
7 T Zex 2 [18.25] 143 —0185
x5
19959247 + 1 43091
8 0.9 ad 3x 2 [21.25] —0.028 —0.015
x2+ 3 330657x + 1.681534
x*+4
9 X 2 [8.21,25] —0235 —0035
x"+6x+6
Y4+ 10x7 + 18
10 LA B 3 [8,21,25] —0024 —0.0016
x +12x-+36x+ 24
*4+18x '+ 88x> + 96
11 x Tk 7O X 4 [21,26-28] 0.905 0.532
x* 4 20x +120x° + 240x + 120
x*—4x' + 84x?
12 e 4 [8.25,29] 0200 —0.115
(x+2)(x —4x"+84x - 16)
4 6055x " — 57.412x" — 674 567>
13 X (20 5x ! 12x 6 x [8.30] i B
x¥+802x° — 49.313x7 — 841.655x — 1699.066
a) as
14 Lo g e § Y )RR
da 4 15}, th
T oA DT+ I (x+a) (15}, this
work
(Table 2) 0.354  0.028

' The degrees of the polynomials from the numerator and denominator of the fraction are given.

For the most important case with r =20,

x+1
0(x) =153

Q.(x, p(x).¢c)=1+ _jij%

p(x)=a(x),i=1,¢,=b

(32)

(33)
(34)
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20 30 40 50 75 100
9.58 6.47 4.89 3.93 2.63 1.98
-1.38 ~0.628 —0358 —0.231 —-0.104 ~0.059
—0.383 —0.185 —0.109 —0.071 —-0.033 -0.019
0.051 0.017 0.008 0.004 0.001 5%10 *
0032 0.011 0.005 0.003 9% 10 * 4x1074
0.123 0.039 0.017 0.009 0.003 0.001
~0.130 —-0.073 —0.046 —0.031 —0.015 —-0.009
—~0.086 —0.157 —-0.204 -0.236 —0.285 -0.312
-0.004 -89x10 * -33x10 ¢ ~14x1071 —4x10° -2%x10°°
~-76%x10 ¥ =2x107° =—10"° =10""° =-10"" = -10""
0.235 0.131 0083 0.057 0.028 0.017
~0.185 —0.123 —0082 —~0.058 —-0.029 —-0.017
1.375 0.492 0.266 0.174 0.087 0.056
0.002 29x1074 73x10°° 31x10°3 =107° =-10""°

For this case, eqn. (23) takes the form
aqg(x) _(1+ r+2) 14+ ao(x)
(x+b)2 X x+b
whose solution is
_ (r~|-2)(x+b)2
[x+ (x +b)(x+r+2)]
From eqgns. (33) and (36) we obtain
x*+x(b+1)
» b)=
Q. (x. b) x*+x(b+r+3)+b(r+2)

J+1=0

ao(x) =

(35)

(36)

(37)



X x
s-0l= (_01XxZL s-O0LXTS— , 0IX9I— , OlXIb-— 2000~ 9100— POLO— 0=1 AN|+|+~VI

14 8
24 X
*(9v) "ubg - z*e v
¢ x X1 X % /- . (z9) ‘ub 69001+ XLPE L+ . X c
s-0l= s-01X¢E6 s-0IXpt c-0IXTY -0IXE9 s-0I%x99 p-OLXLT 0£0°0 9 d [4 OLE L+ XLPE S+ ¥
S+HXCC+ X
¢-01lXEL y—0LXST p-0lXES »-0LXT6 2000 ¥00 0 0100 €v00—  (9¢) "ubg 4 Txeerx 4
—01X98CT— (-0l=  , 0IX0€— , 0IXT1L— 7000 — 6000 — 960'0— LZRO— 0=
b Xp+ X
N -u <
(0s) "ubg [4 [T 1
001 SL 0s or (U3 114 01 S 291 uotewt
x uonenby -8ag (0=4)(x)0 -xoixddy

78

(0 = 4) Y10m s1yy ur pasodoud (x)@G suonewrxoiddy

v 314v.yL



79

(p+xNg+x) g+ )1 +X)

L-OLXTT— o 0lx¢es L,-0LX¢E9 p-00XSTL y-01XT9 00 0 $90°0 978°0 Ist) s +
n
+ X
“(97) ubg v i+||:5 Ly 9
ey X
,-0lX1E—  0LXTS ¢ OLXP8— ,_01XTT— ,_0lXLS$— TOO0— 00— 9T1'0— t=u Amruc+|o.+_vl
(44
(9p) "ubg - W + _TN._ +1 s
. OLX6S— ( OlxXveE— , OLX6V— 100°0— €000— PLOO0O— 8PL'0O— SPTI-— ng
XGp+ X
«( -ub -
0¢) 'ub3y [4 0sT—XT+.x v
L -OLXOv—  (_0LXLT p-0LX0T— L _0IlX9Vv— 100'0— S000— P00~ 8LTO— t=u
SL'8+ XL+ X
¢ ‘ub - <
(1) 'ubg 4 ST X €
,-OLXEL p-0LX8T »-0OLX 19 1000 2000 000 9000 LLOO— e
L+ XG94+ X
(6€) ubg [4 i 4
y OLXLL 2000 900°0 1100 yT00 1L0°0 oro £88°1 =
e+ X
K ‘ub -
(0g) 'ubg [ T~ !
001 SL 0s ov 0ot (174 ol S uonewt
x d0inog 218> (z/1=4) (x)¥1p -xoiddy

yiom sy ut pasodoid (x)7'9 suoneunxoiddy

s d1dVv.L



80

(r+x e+ x Mg+ )1+ x) .

¢-01X1E ¢-0LXP6 p0LXLUL 01 X0t 100°0 LOOO vELO LEL'Y fs1i *
X
(92) "ubg v ...+::|.wa|~+— 9
c_OIXTv— _0LXT9 p-0LXLTL— . 01X0€— ,_0lXSL— ¢€000— ¢SCO0— ¢€PI0— 1=
(9p) ‘ubg - AH+ al +~vm._\ e s
,\6 0l 194
ol
¢-0IX88— _OLXEg8— p- 01 XS L— 2000— $000— 1200— ¢€1T0— S8pL'1— 1=
b XG+ X
(0S) "ubg T M’IH\M+|HX 14
-0l XSS — ¢-Ol= L OIXLT— _0LXT9— Z000— 9000~ €SO0— €lE0— =4
. i TL+ X8+ X
(1) "ubg T ﬂlmkl £
p- 01X 1T »- 0L XE9 2000 £00°0 9000 S10°0 8S0°0 1zro L=
. -ub 6+ kN.TH.r\
(6£) "'ubg 4 ﬂ 4
1000 £00°0 8000 S100 ZE00 600 8150 T L=
‘(0g) ubg 1 yex 1
1+x
001 SL 19 or ot 0T [} S uoneun
x 203in0g  9d2133Q (1=4)(x)'9 -xoiddy

Y1os s1y1 ul pasodoid (x)!Q suoneunxoiddy

9314VvL



81

(p+ Mg+ xNz+x)+x) .

¢ 0l—= [ _0LXV6 , 0IXSL  , 0LXEp 000  CTLO0  1£TO  LILE (s1l -~
+ X
(97) "ubg v ..+~_= +1 9
s-0l=  (_0LX¢£9 » OLX91— ,_0LXLE€— , 0lXp6— HOOO— 6T00— L(S10— T=4
¥ A x
(9p) 'u - - +.|+_vm:| +6LT S
b3 AmN.N_ 4 4%
T
-0 XP6— y-OLX9L 1000 — 2000~ LOO0— 6T00— 16T0— TEET— b=
XGG+ X
. ub [
(0s) ubzg 4 T 4
s-0LX9p— ¢ 0l= L, OIXPE— ,. 0IXLL— T000— 8000— T900— 8EE0— f=
SLSL+ X6+ X
1) ‘ub L
(1p) 'ubg [4 Tesr oy €
v OLXTY 100°0 €000 $00°0 L0 6200  IZI0  PPEO =
SOL+ XL+ X
. ub —_— T
(6¢) ubg [4 T [4
1000 £00°0 0100 6100 w00 8II'0  6£90  608T =
Sy+x
. ‘ub 2
(0g) "ubg 1 T [
00l SL 0s$ ov (V13 0z 01 S o1 P—
x aomog  -8o(q (Z/€ =) (x)Ttp -xosddy

sa0m siyy ut pasodoad (x)T7t@ suonewrxosddy

L d14VL



v+ W g+ xNz+ x)1+x) N

s-0l—= , 01X¢'1 y-0LXSE | _0LX86  $000 1200 b0 SL6S [s1)*(92) "ubg 14 .
T
+ ; +1 9
n
. my. X X
-OIXTUT— s-0IXTY  , 0LXE 1~ ,_0IXLP— 1000— v000— €7800— L[910— T =4 (9p)yubgy - TR TR R S
T V.OnTmy,
p Ol XET— p Ol XbT— 1000~ €000~ 6000— 6£00— Z8€0— €66'T— T=4+0s) ubg 4 P v
. . ) . . . . o 0T+ X01 + ;X
01X ES— ¢-0IXUT~ L 0IXTVv— , 0lXS$6— T00-— 6000— 6900— LSECO— 7=+ '(1¢) ubg T T €
TL+ X8+ X
p-0IX¥9 7000 000 8000  LIOO  SPOO 1610  #850 7=+ ‘(6£) uby 4 T 4
. . . . . S+x
T00°0 ¥00°0 €100 £20°0 15000 sp10 ¥9L0  99TE =+ 'og) ubg I e I
0ol SL 0¢ ot o¢ oz ot 3 o p—
X ERM TN CTg | (Z=4) (X)L -xoxddy

82

jiom sty ut pasodosd (x)5Q suoneunxoiddy

8 4714VL



83

For
b=3 (38)
Q.(x)= X+ dx (39)

x4+ x(6+r)y+3(r+2)

Approximation (39) leads to satisfactory results. Nevertheless, as eqn. (33) is
suggested by a relationship of the form of eqn. (31) we propose

b=3+r (40)
Thus from eqn. (37)

x*+x(4+r)

Q,(x)= (41)

T xT+x(6+2r)+ (r+3)(r+2)

For r =0, approximations (39) and (41) lead to

x%+4x
= 42
Q(x) x2+6x+6 (42)
which is well known in the literature [8,21,25].
Case 3
(x, p(x).¢) =1+ —— (43)
2 x. plx)e) =14 70 5

p(x)=b(x),i=1,¢,=a

By writing the particular form of eqn. (23), solving it with respect to b(x)
and introducing the result into eqn. (43) we obtain

2112

2—a a(r+2) a® a(a—=-2)(r+2) a*(r+2)
Qx a)=—F—-—5—"—|7+ Ix T

(44)

As eqn. (43) is suggested by a relationship of the form of eqn. (31). we
propose

a= —(r+2) (45)

In this case relationship (44) becomes

r+2{1+ r-;2 —[1+ 2Ar+4) (r+2)2]1/2}

0,(x)=1+3 . o (46)

The results obtained using eqn. (46) are given in Tables 4-8,



0.(x, p(x), c) =1+ & 4 2 (47)
r LI SN 73 7/ x xz \
Applying the usual procedure we obtain
2
x*+2x+a
,a) = 48
0.(x. a) x>+ (r+4)x (48)
a=—(r+2) (49)
2 -
Q(x)zx +2x—(r+2) (50)
g x*+ (r+4)x

The results obtained using eqn. (50) are given in Tables 4-8.

The following cases with a more complicated procedure are presented for
r=0.
Case 5

Let us suppose that for r =0

0(x. plx)) =22 (51
Using the values of Q(x) given in Table 1 in eqn. (51)

x+p(x)
o) F2 Q(x) (52)

and solving this equation with respect to p(x), we obtain

20(x) 53)

X)=7—F"~—Xx

P = T=000)

In this way, the values of p(x) can be estimated for the eight values of x
given in Table 1. Using the least-squares method [31,32], an approximation
of the form

C1X
p(x) ~ T (54)

¢, = constant, ¢, = constant

was employed. After performing the calculations, we obtain

X
p(x)=+75% (55)
and thus

x*+3.5x
Q(x) = (56)

x> +55x+5
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The results obtained using eqn. (56) are given in Table 4.
Case 6

Considering that b = b(x) in eqn. (37), we obtain
x*+x(b(x)+1)
x2+ x(b(x) +3)+2b(x)

Q(x, b(x)) = (57)

Using the eight values of Q(x) given in Table 1 and solving an equation of
the form

x*+x(b(x)+1)
x2+ x(b(x) +3) +2b(x)

= Q(x) (58)

with respect to b(x), we obtain

(P +x)(1- 0(x) ~ 2xQ(x)

b(x 59
() =0 -eG) v 20(x) (%)
For instance, if x = 10, »(10) = 2.6075.
An approximation of the form
. ax
b(x) = o (60)
was employed. Using the least-squares method, we obtain
2.9712x
b(x) = 3313757 (61)

Introducing this result in eqn. (57) leads to the following approximation for

Q(x)
0(x) ~ x? +5.347x + 1.376
x2+ 7.347x + 10.069

The good results obtained using approximation (62) are given in Table 4.

(62)

DISCUSSION

The rational approximations for Q(x) given in this work are of the form

7:(x)
x)= 63
0.(x) = 155 (63)
where ¢,(x) and g,(x) are polynomials of the same degree. The degree of
the polynomials gives the degree of the rational approximation for Q,(x).
The higher the degree of the rational approximation, the more complicated
Q,(x) becomes and thus the calculations increase in complexity.
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In addition to the rational approximations, relationships such as eqn. (46)
or number 5 in Table 3 are proposed. Special emphasis is given to the
approximate functions Q(x) (r = 0).

From the data given in Tables 3 and 4, we can make the following
observations:

(1) the best rational approximation of the first degree is approximation 4
in Table 3;

(2) the best rational approximation of the second degree is approximation
3 in Table 4;

(3) the best approximation is approximation 10 in Table 3 followed by
approximation 3 in Table 4;

(4) approximation 9 in Table 4 is very simple and gives good results;

(5) approximation 4 in Table 4 also gives good results;

(6) approximations 11, 12 and 13 in Table 3 do not give as good results as
approximations 10 in Table 3 and 3 in Table 4;

(7) although approximation 14 in Table 3 gives good results for x > 20, it
is not recommended due to its rather complicated form.

For approximations Q(x) with r # 0, the data given in Tables 5-8 show
that number 1 for the first degree, number 3 for the second degree and
number 5 from the irrational approximations give the best results. Although
approximation 6 gives good results for x > 20, it is difficult to handle.

The approximations given by eqns. (30), (39), (41). (46) and (50) can be
applied, in principle, for any value of r.

Using the procedures presented here, other approximations can be de-
rived for Q(x).

CONCLUSIONS

(1) It has been shown that the approximate evaluation of the temperature
integral consists of finding a solution for the differential equation (17). For
such equations, solutions of the form (24) obtained from eqn. (23) are
proposed.

(2) A method for the determination of the coefficients ¢, is given (see
cases 5 and 6).

(3) The precision of the approximations decreases with an increase in r.

(4) The method presented in this work allows us to obtain other ap-
proximations by a convenient choice of functions of the form (19).

(5) We recommend the following approximations from this work

x2+x(4+7r)
x2+x(6+2r)+ (r+3)(r+2)

T
f yre E/Rvdy = %TerZ e E/RT (64)
0

T R x+1
e~ E/RY ~ D rt2e-E/RT_Z 7 0
_/(; ye dy E © x+3+r (65)
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./-T)‘r e—E/Ry dy ~ %Tr+2
0

2, 1/2
><e'5/”1+r+2 1+r+2_ 1+2(r+4)+(r+22) (66)
2 X X X
and for r=0
LA R 5 _porp X +5347x +1.376
Ydy==T 67
fo € YEED® X2+ 7.347x + 10.069 (67)

In all these approximations x = E/RT.
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